Range Searching

e Data structure for a set of objects (points,
rectangles, polygons) for efficient range

queries.
Y ° : .
° o ’.
° @ g *
X

e Depends on type of objects and queries.
Consider basic data structures with broad
applicability.

e Time-Space tradeoff: the more we
preprocess and store, the faster we can
solve a query.

e Consider data structures with (nearly)
linear space.

Subhash Suri UC Santa Barbara



1-Dimensional Search

e Points in 1D P = {p1,p2,...,pn}-

e Queries are intervals.

15 71
© -0 9-0-0 @ -0 | ©)
3 709 21 23 25 45 7072 100 120

e If the range contains £ points, we want to
solve the problem in O(logn + k) time.

e Does hashing work? Why not?

e A sorted array achieves this bound. But it
doesn’t extend to higher dimensions.

e Instead, we use a balanced binary tree.

Subhash Suri UC Santa Barbara



Tree Search

e Build a balanced binary tree on the sorted
list of points (keys).

e Leaves correspond to points; internal
nodes are branching nodes.

e Given an interval [z},, z};|, search down the
tree for z;, and xzy;.

o All leaves between the two form the
answer.

e Tree searches takes 2logn, and reporting
the points in the answer set takes O(k)
time; assume leaves are linked together.

Subhash Suri UC Santa Barbara



Multi-Dimensional Data

Y ° : .
° o ’.
° Q ® ’
X

e Range searching in higher dimensions?

e kD-trees [Jon Bentley 1975]. Stands for
k-dimensional trees.

e Simple, general, and arbitrary
dimensional. Asymptotic search
complexity not very good.

e Extends 1D tree, but alternates using x-
y-coordinates to split. In k-dimensions,
cycle through the dimensions.

Subhash Suri UC Santa Barbara



kD-Trees

p 4. P
> e | *Po
Py
p, p:
— . Pg 8
p p3 ® p7
Subdivision Tree structure

e A binary tree. Each node has two values:
split dimension, and split value.

e If split along x, at coordinate s, then left
child has points with z-coordinate < s;
right child has remaining points. Same for

Y.
¢ When O(1) points remain, put them in a

leaf node.

e Data points at leaves only; internal nodes
for branching and splitting.

Subhash Suri UC Santa Barbara



Splitting

p4. p.
> e | *Po
Py
p 2 po
8
— . Pg
p F *P;
Subdivision Tree structure

e To get balanced trees, use the median
coordinate for splitting—median itself can
be put in either half.

e With median splitting, the height of the
tree guaranteed to be O(logn).

e Either cycle through the splitting
dimensions, or make data-dependent
choices. E.g. select dimension with max
spread.

Subhash Suri UC Santa Barbara



Space Partitioning View

p4. p.
> e | *Po
Py
p 2 po
8
— . Pg
p F *P;
Subdivision Tree structure

e kD-tree induces a space subdivision—each
node introduces a x- or y-aligned cut.

e Points lying on two sides of the cut are
passed to two children nodes.

e The subdivision consists of rectangular
regions, called cells (possibly unbounded).

e Root corresponds to entire space; each
child inherits one of the halfspaces, so on.

e Leaves correspond to the terminal cells.

e Special case of a general partition BSP.

Subhash Suri UC Santa Barbara



Construction

Py |p
> e | *Po
Py
p, p‘
8
29 Pe
3
el ¢ p7
Subdivision Tree structure

e Can be built in O(nlogn) time recursively.

e Presort points by x and y-coordinates, and
cross-link these two sorted lists.

e Find the r-median, say, by scanning the x
list. Split the list into two. Use the
cross-links to split the y-list in O(n) time.

e Now two subproblems, each of size n/2,
and with their own sorted lists. Recurse.

e Recurrence T'(n) =27T(n/2) 4+ n, which
solves to T'(n) = O(nlogn).

Subhash Suri UC Santa Barbara



Searching kD-Trees

The range Nodes visited in search

e Suppose query rectangle is R. Start at
root node.

e Suppose current splitting line is vertical
(analogous for horizontal). Let v, w be left
and right children nodes.

o If v a leaf, report cell(v) N R;
if cell(v) C R, report all points of cell(v);
if cell(v) N R = (), skip;
otherwise, search subtree of v recursively.

e Do the same for w.

e Procedure obviously correct. What is the
time complexity?

Subhash Suri UC Santa Barbara



Search Complexity

The range Nodes visited in search

e When cell(v) C R, complexity is linear in
output size.

e It suffices to bound the number of nodes v
visited for which the boundaries of cell(v)
and R intersect.

o If cell(v) outside R, we don’t search it; if
cell(v) inside R, we enumerate all points in
region of v; a recursive call is made only if

cell(v) partially overlaps R; the kD-tree
height is O(logn).

e Let / be the line defining one side of R.

¢ We prove a bound on the number of cells
that intersect /; this is more than what is
needed; multiply by 4 for total bound.

Subhash Suri UC Santa Barbara




Search Complexity

The range Nodes visited in search

¢ How many cells can a line intersect?

e Since splitting dimensions alternate, the
key idea is to consider two levels of the
tree at a time.

e Suppose the first cut is vertical, and
second horizontal. We have 4 cells, each
with n/4 points.

e A line intersects exactly two cells; the
others cells will be either outside or
entirely inside R.

e The recurrence is

1 if n=1,
@n) = { 2Q(n/4) + 2 otherwise.

Subhash Suri UC Santa Barbara



Search Complexity

The range Nodes visited in search

e The recurrence Q(n) =2Q(n/4) + 2 solves
to

e kD-Tree is an O(n) space data structure
that solves 2D range query in worst-case
time O(y/n +m), where m is the output
size.

Subhash Suri UC Santa Barbara



d-Dim Search Complexity

¢ What’s the complexity in higher
dimensions?

e Try 3D, and then generalize.

e The recurrence is
Q(n) =271Q(n/2%) +1

e It solves to

Q(n) = O(n' =19

e kD-Tree is an O(dn) space data structure
that solves d-dim range query in
worst-case time O(n'~'/? + m), where m is
the output size.

Subhash Suri UC Santa Barbara



