
Subhash Suri UC Santa Barbara

Range Searching

• Data structure for a set of objects (points,
rectangles, polygons) for efficient range
queries.

Q

X

Y

• Depends on type of objects and queries.
Consider basic data structures with broad
applicability.

• Time-Space tradeoff: the more we
preprocess and store, the faster we can
solve a query.

• Consider data structures with (nearly)
linear space.

Subhash Suri UC Santa Barbara

1-Dimensional Search

• Points in 1D P = {p1, p2, . . . , pn

}.

• Queries are intervals.

3 7 9 45 70 72 100 12021 2523

15 71

• If the range contains k points, we want to
solve the problem in O(log n + k) time.

• Does hashing work? Why not?

• A sorted array achieves this bound. But it
doesn’t extend to higher dimensions.

• Instead, we use a balanced binary tree.

Subhash Suri UC Santa Barbara

Tree Search

u v
1 7 9 15 17 24 25 29 314 12 14 20 223 27

15

12

4 9 14 17

20

247

22 25 29

27

1

3

x =2 x =23lo hi

• Build a balanced binary tree on the sorted
list of points (keys).

• Leaves correspond to points; internal
nodes are branching nodes.

• Given an interval [x
lo

, x
hi

], search down the
tree for x

lo

and x
hi

.

• All leaves between the two form the
answer.

• Tree searches takes 2 log n, and reporting
the points in the answer set takes O(k)

time; assume leaves are linked together.

Subhash Suri UC Santa Barbara

Multi-Dimensional Data

Q

X

Y

• Range searching in higher dimensions?

• kD-trees [Jon Bentley 1975]. Stands for
k-dimensional trees.

• Simple, general, and arbitrary
dimensional. Asymptotic search
complexity not very good.

• Extends 1D tree, but alternates using x-
y-coordinates to split. In k-dimensions,
cycle through the dimensions.

Subhash Suri UC Santa Barbara

kD-Trees

p7

p6

p4 p5
p9

p10

p1

p8

p2

p3
p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

Subdivision Tree structure

• A binary tree. Each node has two values:
split dimension, and split value.

• If split along x, at coordinate s, then left
child has points with x-coordinate ∑ s;
right child has remaining points. Same for
y.

• When O(1) points remain, put them in a
leaf node.

• Data points at leaves only; internal nodes
for branching and splitting.

Subhash Suri UC Santa Barbara

Splitting

p7

p6

p4 p5
p9

p10

p1

p8

p2

p3
p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

Subdivision Tree structure

• To get balanced trees, use the median
coordinate for splitting—median itself can
be put in either half.

• With median splitting, the height of the
tree guaranteed to be O(log n).

• Either cycle through the splitting
dimensions, or make data-dependent
choices. E.g. select dimension with max
spread.

Subhash Suri UC Santa Barbara

Space Partitioning View

p7

p6

p4 p5
p9

p10

p1

p8

p2

p3
p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

Subdivision Tree structure

• kD-tree induces a space subdivision—each
node introduces a x- or y-aligned cut.

• Points lying on two sides of the cut are
passed to two children nodes.

• The subdivision consists of rectangular
regions, called cells (possibly unbounded).

• Root corresponds to entire space; each
child inherits one of the halfspaces, so on.

• Leaves correspond to the terminal cells.

• Special case of a general partition BSP.

Subhash Suri UC Santa Barbara

Construction

p7

p6

p4 p5
p9

p10

p1

p8

p2

p3
p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

Subdivision Tree structure

• Can be built in O(n log n) time recursively.

• Presort points by x and y-coordinates, and
cross-link these two sorted lists.

• Find the x-median, say, by scanning the x
list. Split the list into two. Use the
cross-links to split the y-list in O(n) time.

• Now two subproblems, each of size n/2,
and with their own sorted lists. Recurse.

• Recurrence T (n) = 2T (n/2) + n, which
solves to T (n) = O(n log n).

Subhash Suri UC Santa Barbara

Searching kD-Trees

p7

p6

p4 p5
p9

p10

p1

p8

p2

p3
p1 p2

p5 p8p3 p4

p6 p7

p9 p10

Nodes visited in searchThe range

• Suppose query rectangle is R. Start at
root node.

• Suppose current splitting line is vertical
(analogous for horizontal). Let v, w be left
and right children nodes.

• If v a leaf, report cell(v) \R;
if cell(v) µ R, report all points of cell(v);
if cell(v) \R = ;, skip;
otherwise, search subtree of v recursively.

• Do the same for w.

• Procedure obviously correct. What is the
time complexity?

Subhash Suri UC Santa Barbara

Search Complexity

p7

p6

p4 p5
p9

p10

p1

p8

p2

p3
p1 p2

p5 p8p3 p4

p6 p7

p9 p10

Nodes visited in searchThe range

• When cell(v) µ R, complexity is linear in
output size.

• It suffices to bound the number of nodes v
visited for which the boundaries of cell(v)

and R intersect.

• If cell(v) outside R, we don’t search it; if
cell(v) inside R, we enumerate all points in
region of v; a recursive call is made only if
cell(v) partially overlaps R; the kD-tree
height is O(log n).

• Let ` be the line defining one side of R.

• We prove a bound on the number of cells
that intersect `; this is more than what is
needed; multiply by 4 for total bound.

Subhash Suri UC Santa Barbara

Search Complexity

p7

p6

p4 p5
p9

p10

p1

p8

p2

p3
p1 p2

p5 p8p3 p4

p6 p7

p9 p10

Nodes visited in searchThe range

• How many cells can a line intersect?

• Since splitting dimensions alternate, the
key idea is to consider two levels of the
tree at a time.

• Suppose the first cut is vertical, and
second horizontal. We have 4 cells, each
with n/4 points.

• A line intersects exactly two cells; the
others cells will be either outside or
entirely inside R.

• The recurrence is

Q(n) =

Ω
1 if n = 1,
2Q(n/4) + 2 otherwise.

Subhash Suri UC Santa Barbara

Search Complexity

p7

p6

p4 p5
p9

p10

p1

p8

p2

p3
p1 p2

p5 p8p3 p4

p6 p7

p9 p10

Nodes visited in searchThe range

• The recurrence Q(n) = 2Q(n/4) + 2 solves
to

Q(n) = O(

p
n)

• kD-Tree is an O(n) space data structure
that solves 2D range query in worst-case
time O(

p
n + m), where m is the output

size.

Subhash Suri UC Santa Barbara

d-Dim Search Complexity

• What’s the complexity in higher
dimensions?

• Try 3D, and then generalize.

• The recurrence is

Q(n) = 2

d°1Q(n/2

d

) + 1

• It solves to

Q(n) = O(n1°1/d

)

• kD-Tree is an O(dn) space data structure
that solves d-dim range query in
worst-case time O(n1°1/d

+ m), where m is
the output size.

