Range Searching

- Data structure for a set of objects (points, rectangles, polygons) for efficient range queries.

- Depends on type of objects and queries. Consider basic data structures with broad applicability.
- Time-Space tradeoff: the more we preprocess and store, the faster we can solve a query.
- Consider data structures with (nearly) linear space.

1-Dimensional Search

- Points in 1D $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
- Queries are intervals.

- If the range contains k points, we want to solve the problem in $O(\log n+k)$ time.
- Does hashing work? Why not?
- A sorted array achieves this bound. But it doesn't extend to higher dimensions.
- Instead, we use a balanced binary tree.

Tree Search

- Build a balanced binary tree on the sorted list of points (keys).
- Leaves correspond to points; internal nodes are branching nodes.
- Given an interval $\left[x_{l o}, x_{h i}\right]$, search down the tree for $x_{l o}$ and $x_{h i}$.
- All leaves between the two form the answer.
- Tree searches takes $2 \log n$, and reporting the points in the answer set takes $O(k)$ time; assume leaves are linked together.

Multi-Dimensional Data

- Range searching in higher dimensions?
- kD-trees [Jon Bentley 1975]. Stands for k-dimensional trees.
- Simple, general, and arbitrary dimensional. Asymptotic search complexity not very good.
- Extends 1D tree, but alternates using x -y-coordinates to split. In k-dimensions, cycle through the dimensions.

$k D$-Trees

- A binary tree. Each node has two values: split dimension, and split value.
- If split along x, at coordinate s, then left child has points with x-coordinate $\leq s$; right child has remaining points. Same for y.
- When $O(1)$ points remain, put them in a leaf node.
- Data points at leaves only; internal nodes for branching and splitting.

Splitting

- To get balanced trees, use the median coordinate for splitting-median itself can be put in either half.
- With median splitting, the height of the tree guaranteed to be $O(\log n)$.
- Either cycle through the splitting dimensions, or make data-dependent choices. E.g. select dimension with max spread.

Space Partitioning View

- $k D$-tree induces a space subdivision-each node introduces a x - or y-aligned cut.
- Points lying on two sides of the cut are passed to two children nodes.
- The subdivision consists of rectangular regions, called cells (possibly unbounded).
- Root corresponds to entire space; each child inherits one of the halfspaces, so on.
- Leaves correspond to the terminal cells.
- Special case of a general partition BSP.

Construction

- Can be built in $O(n \log n)$ time recursively.
- Presort points by x and y-coordinates, and cross-link these two sorted lists.
- Find the x-median, say, by scanning the x list. Split the list into two. Use the cross-links to split the y-list in $O(n)$ time.
- Now two subproblems, each of size $n / 2$, and with their own sorted lists. Recurse.
- Recurrence $T(n)=2 T(n / 2)+n$, which solves to $T(n)=O(n \log n)$.

Searching $k D$-Trees

- Suppose query rectangle is R. Start at root node.
- Suppose current splitting line is vertical (analogous for horizontal). Let v, w be left and right children nodes.
- If v a leaf, report $\operatorname{cell}(v) \cap R$; if $\operatorname{cell}(v) \subseteq R$, report all points of $\operatorname{cell}(v)$; if $\operatorname{cell}(v) \cap R=\emptyset$, skip;
otherwise, search subtree of v recursively.
- Do the same for w.
- Procedure obviously correct. What is the time complexity?

Search Complexity

- When $\operatorname{cell}(v) \subseteq R$, complexity is linear in output size.
- It suffices to bound the number of nodes v visited for which the boundaries of $\operatorname{cell}(v)$ and R intersect.
- If $\operatorname{cell}(v)$ outside R, we don't search it; if $\operatorname{cell}(v)$ inside R, we enumerate all points in region of v; a recursive call is made only if $\operatorname{cell}(v)$ partially overlaps R; the $k D$-tree height is $O(\log n)$.
- Let ℓ be the line defining one side of R.
- We prove a bound on the number of cells that intersect ℓ; this is more than what is needed; multiply by 4 for total bound.

Search Complexity

- How many cells can a line intersect?
- Since splitting dimensions alternate, the key idea is to consider two levels of the tree at a time.
- Suppose the first cut is vertical, and second horizontal. We have 4 cells, each with $n / 4$ points.
- A line intersects exactly two cells; the others cells will be either outside or entirely inside R.
- The recurrence is

$$
Q(n)= \begin{cases}1 & \text { if } n=1 \\ 2 Q(n / 4)+2 & \text { otherwise }\end{cases}
$$

Search Complexity

- The recurrence $Q(n)=2 Q(n / 4)+2$ solves to

$$
Q(n)=O(\sqrt{n})
$$

- kD-Tree is an $O(n)$ space data structure that solves 2 D range query in worst-case time $O(\sqrt{n}+m)$, where m is the output size.

d-Dim Search Complexity

- What's the complexity in higher dimensions?
- Try 3D, and then generalize.
- The recurrence is

$$
Q(n)=2^{d-1} Q\left(n / 2^{d}\right)+1
$$

- It solves to

$$
Q(n)=O\left(n^{1-1 / d}\right)
$$

- $k D$-Tree is an $O(d n)$ space data structure that solves d-dim range query in worst-case time $O\left(n^{1-1 / d}+m\right)$, where m is the output size.

