
CS 130A Su19 Practice Final
Please print your name and perm number
True or False

1. All trees are graphs.

2. All undirected, connected graphs are trees.

3. All undirected, acyclic graphs are trees.

4. Kruskal’s algorithm is more efficient than Prim’s for computing the minimum spanning

tree on a sparse graph.

5. A Bloom filter is a space-efficient probabilistic data structure that is used to test whether

an element is a member of a set. False negative matches are possible, but false

positives are not.

6. Dijkstra’s shortest path algorithm runs in O(V​3​) time.

7. The Bellman–Ford shortest path algorithm runs in Θ(V​3​) time in the worst case.

8. The Floyd–Warshall all-pairs shortest path algorithm runs in Θ(V​3​) time in the worst

case.

9. The set of linear modular functions forms a universal hash function family.

10. On a connected, undirected graph with only positive edge costs, adding a positive cost c

to every edge will increase the shortest path cost between any two nodes by an integer

multiple of c.

11. On a connected, undirected graph with only positive edge costs, adding a positive cost c

to every edge will increase the minimum spanning tree cost by an integer multiple of c.

Algorithm Complexity Categorization
For each operation, provide the worst-case Θ runtime for the appropriate n-item data structure.

12. Perfect hash insert

13. Hash table (with separate chaining collision resolution) lookup

14. Perfect hash resize

15. Binary heap build_heap

16. Binary heap build_heap using sort and the median method

17. Binary heap find_min

18. Binary heap delete_min

19. Binary heap increment_key

20. Binary heap insert

21. AVL tree insert

22. AVL tree find

23. Red-Black tree insert

24. Red-Black tree remove

25. 2-3-4 tree insert

26. Leftist heap merge

27. Amortized cost per operation on the union-find data structure

28. Quicksort

29. Find-in-range for a k-d tree of 3 dimensions (returns y items)

30. Find-in-range for a k-d tree of 2 dimensions (returns y items)

31. Recurrence Relation
Solve the following recurrence relations, and provide an example algorithm that can be
modelled by the relation (the common name will do). Assume T(1) is a constant

a. T(n) = 2*T(n/2) + n

b. T(n) = n + T(n-1)

c. T(n) = 1 + T(n/2)

32. AVL Problem
a. Insert the following nodes in order into an AVL tree and draw the final result: 15, 20, 10,

5, 12, 25.

b. Insert 22 and draw the final result.

c. Delete 15 and draw the final result.

33. You are implementing a B-Tree. The block size on a disk is 4096 bytes.
a. For a 4-byte key, what is the maximum number of keys that can fit in a single internal

node?

b. How many keys can be uniquely stored in the tree?

c. What is the minimum height of a tree that can store all of the unique keys?

34. For a 2-3-4 Tree, start from scratch and insert the numbers 1,2,3,4,5 in sequence. Draw
the tree at the conclusion of each insertion.

35. Amortized Analysis
In Programming Assignment 2, you implemented a modified queue that supported constant time
push(), pop(), and contains(). To do this, you used a linked-list queue and a hash table. It turns
out, you can use an array implementation of a queue, called a circular array. You need to
maintain two index values for the head and the tail. The array wraps around by using % length
(modulo, not percent). This allows constant time push() and pop(), except for when the array fills
up. Then you’ll need to double the size of the array and copy everything over. That takes time
linear in the number of elements copied. You should probably double the size of the hash table
at this point as well. Fortunately, that also just take time linear in the number of elements
copied. For this problem, assume we start with a queue of size 1.

a. What is the worst case sequence of m operations?

b. What is the cost of those m operations?

c. What is the amortized cost of one operation?

36. Graph Problem
Given an undirected graph G={E,V} with positive edge costs C​ij​ ((i,j) ∈ E, i ∈ V, j ∈ V) and
given a vertex v’, v’ ∈ V, describe an efficient algorithm to determine if v’ is NOT on any
shortest path for which it is not an endpoint (obviously v’ is on the shortest path if it is the
destination). That is, ∀​ij​ i,j ∈ V and i≠v’ and j≠v’, determine v’ ∉ shortest_path(i, j). Note, if your
algorithm is not the most efficient, but is still correct, you will still get partial credit. What is the
worst-case runtime of your algorithm in terms of |E| and |V|?

37. Splay Trees
a. Insert the nodes 1, 2, 3, 4, 5 into a splay tree. Draw the resulting tree.

b. Find node 3. Draw the resulting tree.

c. Delete node 2. Draw the resulting tree.

