Red-Black Trees

CS130A Coakley

Recall

AVL Trees have properties to enforce balance

- The heights of children can differ by at most 1
- Height of a tree = $1+\max (h e i g h t-l e f t, ~ h e i g h t-r i g h t) ~$
- Height of NULL is -1

AVL Trees store their height at each node

Other Self-Balancing Trees

We want to keep O(log n) bounds
We are willing to be even more unbalanced than AVL
The maximum depth of a leaf node must still be $\mathrm{O}(\log \mathrm{n})$ to keep our bounds

We will limit our height to $2 \log (\mathrm{~N}+1)$
As an aside, these will have additional computational complexity benefits (sounds better than "theoretical benefits")

Red-Black Tree Prelude

Your book provides an advanced (top-down) description in Chapter 12, but the textual description is a little lacking.

We will mimic Wikipedia's labelling.
Similar visualizer to AVL (slightly better):
https://www.cs.usfca.edu/~galles/visualization/RedBlack.ht ml

Red-Black Trees

Properties:

1. All nodes are red or black
2. The root is black
3. All leaves (NULL) are black
4. If a node is red, its children must be black
5. The path from a node to all of its leaves contains the same number of black nodes (this gives us a black-height of the tree and defines the black-depth of a node)

The maximum height is $2 \log (N+1)$

Example

The maximum height is $2 \log (n+1)$

bh(v) = black-height of v (excludes v even if black)
$h(v)=$ height of v
Lemma: A subtree rooted at node v has at least $2^{\text {bh(v) }} 1$ nodes

Note: This is by induction on height.
Basis: $h(v)=0$ for NULL gives $2^{\text {bh(v) }}-1=2^{0}-1=1-1=0$
Inductive step: v such that $h(v)=k$, has at least $2^{\text {bh }(v)}-1$ internal nodes implies that v^{\prime} such that $h\left(v^{\prime}\right)=k+1$ has at least $\left.2^{\text {bh(}} \mathrm{v}^{\prime}\right)-1$ internal nodes.

Since v^{\prime} has $h\left(v^{\prime}\right)>0$ it is an internal node.
As such it has two children each of which have a black-height of either bh(v') or bh(v')-1 (depending on whether the child is red or black, respectively).

By the inductive hypothesis each child has at least $\left.2^{\text {bh(}} \mathrm{v}^{\prime}\right)-1$ internal nodes, so v' has at least:

$$
\left(2^{\mathrm{bh}\left(v^{\prime}\right)-1}-1\right)+\left(2^{\mathrm{bh}\left(v^{\prime}\right)-1}-1\right)+1=2^{\mathrm{bh}\left(v^{\prime}\right)}-1
$$

internal nodes.

Height Bounds Via Lemma

Property 4 (red children are black) guarantees us that at least half of the nodes on any path from the root to to a leaf are black.

The bh(root) of a tree of n nodes is therefore at least h (root)/2-1. Using the lemma,
$n>=2^{h(r o o t) / 2}-1$
$\log (n+1)>=h($ root $) / 2$
$h($ root $)<=2 \log (n+1)$

Operations

The red-black tree is still a binary search tree
Search is $O(\log n)$ based on height limit
Insertion and Deletion are special, and involve color changes and rotations.

Insertion

We always insert a red node. It replaces a black NULL-leaf with itself and 2 black NULL-leaves.

Recall the properties:

1. All nodes are red or black
2. The root is black
3. All leaves (NULL) are black
4. If a node is red, its children must be black
5. The path from a node to all of its leaves contains the same number of black nodes (this gives us a black-height of the tree and defines the black-depth of a node)

Some Labels

N is the current node. It is the new node in the base case, but we have to recurse to fix the tree.
P is the parent node
S is the sibling
G is the grandparent
U is the uncle - the parent's sibling, if it exists

Enumerate the Cases

1. N is the root node
2. P is black
3. P and U are red
4. N is left-right or right-left of G, P is red, U is black
5. N is left-left or right-right of G, P is red, U is black

- This is similar to the special cases of the AVL tree, with an additional non-trivial case based on parent color.
- The black-height property will be preserved without needing to store black-height at each node.
- How often do case 4 and 5 occur on the non-recursive call?

N is the Root Node

Change the color to black to satisfy property 2

P is Black

Done

P and U Are Red

Change P and U to black, Change G to red, recurse on G
G must have been black, so bg(G) did not change.
If G's parent is red, this may cause additional changes.

N is Left-Right of G, P is Red, U is Black

Left rotation on P. Converts case 4 to case 5.

N is Left-Left of G, P is Red, U is Black

Right rotation on G, switch colors of P and G.

Deletion

Swap with smallest element from right subtree, do not change color of node, delete the swapped node location.

The smallest element from the right subtree:

1. Satisfies the search tree criteria at the new location
2. Satisfied the red-black properties before the node was deleted

Now we are deleting a node with at most one child.
Note, if there were no right children, use the greatest child of the left subtree and swap all left/right in what follows.

More Labels

M is the node being deleted
C is the child (NULL is fine if there were no proper children)

Cases (we will number the complex case)

M is red - Remove, done.
M is black, C is red - Replace M with C, Recolor C, Done
M is black, C is black (NULL is black) - All the complexity
Replace M with C , relabel $\mathrm{C} \rightarrow \mathrm{N}$ in the new position
S is the sibling of N (was the sibling of M)
S_{L} is Sibling's left child
S_{R} is Sibling's right child

Enumerate

1. N is the new root
2. S is red
3. P, S, and S^{\prime} s children are black
4. S and $S^{\prime} s$ children are black, P is red
5. S is black, S_{L} is red, S_{R} is black, N is the left child of P
6. S is black, S_{R} is red, N is the left child of P

N is the New Root

Done

S is Red

Switch colors of P and S, rotate left at P.
Doesn't fix (missing black node), just transformed to cases 4-6

P, S, and S's Children are Black

Make S red, recurse on P (back to case 1)
N's side was one black short. P's subtree is fixed, but property 5 is broken unless P was the root.

S and S's Children are Black, P is Red

Switch colors of P and S , Done
Black-depth of N increased without impacting S's subtree

S is Black, S_{L} is Red, S_{R} is Black, N is left child of P

Rotate right at S, switch colors of S_{L} and S
This transforms it into a special form of case 6

S is Black, S_{R} is Red, N is the left child of P

Rotate left at P, switch colors of S and P, make S_{R} black N's black-depth incremented by one, other paths unchanged

Recursion

Wikipedia has tail-recursive code for all of this.
Only specific cases recursed
The number of recursions in theory for a set of insertions/deletions is slightly better than for AVL trees (constant amortized update costs)

In practice, these stay quite balanced

