
Red-Black Trees
CS130A Coakley



Recall 

AVL Trees have properties to enforce balance

● The heights of children can differ by at most 1
● Height of a tree = 1 + max(height-left, height-right)
● Height of NULL is -1

AVL Trees store their height at each node



Other Self-Balancing Trees

We want to keep O(log n) bounds

We are willing to be even more unbalanced than AVL

The maximum depth of a leaf node must still be O(log n) 
to keep our bounds

We will limit our height to 2 log(N+1)

As an aside, these will have additional computational 
complexity benefits (sounds better than “theoretical 
benefits”)



Red-Black Tree Prelude

Your book provides an advanced (top-down) description in 
Chapter 12, but the textual description is a little lacking.

We will mimic Wikipedia’s labelling.

Similar visualizer to AVL (slightly better):

https://www.cs.usfca.edu/~galles/visualization/RedBlack.ht
ml

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html


Red-Black Trees

Properties:

1. All nodes are red or black
2. The root is black
3. All leaves (NULL) are black
4. If a node is red, its children must be black
5. The path from a node to all of its leaves contains the 

same number of black nodes (this gives us a 
black-height of the tree and defines the black-depth of 
a node)

The maximum height is 2 log (N+1)

 



Example



The maximum height is 2 log (n+1)

bh(v) = black-height of v (excludes v even if black)

h(v) = height of v

Lemma: A subtree rooted at node v has at least 2bh(v)-1 
nodes

Note: This is by induction on height.

Basis: h(v)=0 for NULL gives 2bh(v)-1 = 20-1 = 1-1 = 0

Inductive step: v such that h(v) = k, has at least 2bh(v) − 1 
internal nodes implies that v’ such that h(v’) = k+1 has at 
least 2bh(v’) − 1 internal nodes.



Since v’ has h(v’) > 0 it is an internal node. 

As such it has two children each of which have a 
black-height of either bh(v’) or bh(v’)-1 (depending on 
whether the child is red or black, respectively).

By the inductive hypothesis each child has at least 2bh(v’) − 1 
internal nodes, so v’ has at least:

(2bh(v′)-1 − 1) + (2bh(v′)-1 − 1) + 1 = 2bh(v′) − 1

internal nodes.



Height Bounds Via Lemma

Property 4 (red children are black) guarantees us that at 
least half of the nodes on any path from the root to to a 
leaf are black.

The bh(root) of a tree of n nodes is therefore at least 
h(root)/2-1. Using the lemma,

n >= 2h(root)/2-1

log(n+1) >= h(root)/2

h(root) <= 2 log(n+1)



Operations

The red-black tree is still a binary search tree

Search is O(log n) based on height limit

Insertion and Deletion are special, and involve color 
changes and rotations.



Insertion

We always insert a red node. It replaces a black NULL-leaf 
with itself and 2 black NULL-leaves.

Recall the properties:

1. All nodes are red or black
2. The root is black
3. All leaves (NULL) are black
4. If a node is red, its children must be black
5. The path from a node to all of its leaves contains the 

same number of black nodes (this gives us a 
black-height of the tree and defines the black-depth of 
a node)



Some Labels

N is the current node. It is the new node in the base case, 
but we have to recurse to fix the tree.

P is the parent node

S is the sibling 

G is the grandparent

U is the uncle - the parent’s sibling, if it exists



Enumerate the Cases

1. N is the root node
2. P is black
3. P and U are red
4. N is left-right or right-left of G, P is red, U is black
5. N is left-left or right-right of G, P is red, U is black
● This is similar to the special cases of the AVL tree, with 

an additional non-trivial case based on parent color.
● The black-height property will be preserved without 

needing to store black-height at each node.
● How often do case 4 and 5 occur on the non-recursive 

call?



N is the Root Node

Change the color to black to satisfy property 2



P is Black

Done



P and U Are Red

Change P and U to black, Change G to red, recurse on G

G must have been black, so bg(G) did not change.

If G’s parent is red, this may cause additional changes.



N is Left-Right of G, P is Red, U is Black

Left rotation on P. Converts case 4 to case 5.



N is Left-Left of G, P is Red, U is Black

Right rotation on G, switch colors of P and G.



Deletion

Swap with smallest element from right subtree, do not 
change color of node, delete the swapped node location.

The smallest element from the right subtree:

1. Satisfies the search tree criteria at the new location
2. Satisfied the red-black properties before the node was 

deleted

Now we are deleting a node with at most one child.

Note, if there were no right children, use the greatest child 
of the left subtree and swap all left/right in what follows.



More Labels

M is the node being deleted

C is the child (NULL is fine if there were no proper 
children)



Cases (we will number the complex case)

M is red - Remove, done.

M is black, C is red - Replace M with C, Recolor C, Done

M is black, C is black (NULL is black) - All the complexity

Replace M with C, relabel C→N in the new position

S is the sibling of N (was the sibling of M)

SL is Sibling’s left child

SR is Sibling’s right child



Enumerate

1. N is the new root
2. S is red
3. P, S, and S’s children are black
4. S and S’s children are black, P is red
5. S is black, SL is red, SR is black, N is the left child of P
6. S is black, SR is red, N is the left child of P



N is the New Root

Done



S is Red

Switch colors of P and S, rotate left at P.

Doesn’t fix (missing black node), just transformed to cases 
4-6



P, S, and S’s Children are Black

Make S red, recurse on P (back to case 1)

N’s side was one black short. P’s subtree is fixed, but 
property 5 is broken unless P was the root.



S and S’s Children are Black, P is Red

Switch colors of P and S, Done

Black-depth of N increased without impacting S’s subtree



S is Black, SL is Red, SR is Black, N is left child of P

Rotate right at S, switch colors of SL and S

This transforms it into a special form of case 6



S is Black, SR is Red, N is the left child of P

Rotate left at P, switch colors of S and P, make SR black

N’s black-depth incremented by one, other paths 
unchanged



Recursion

Wikipedia has tail-recursive code for all of this.

Only specific cases recursed

The number of recursions in theory for a set of 
insertions/deletions is slightly better than for AVL trees 
(constant amortized update costs)

In practice, these stay quite balanced


