CS130A S19 Final

Coakley

Asymptotic Runtime

Know all the worst-case bounds (see practice final)

Know average case bounds where they truly differ (e.g. QuickSort)

Know the new tricky one: kDTree

Recurrence Relation

Know the Master Method

Be able to produce a recurrence relation or compute runtime from a function pseudocode

Hash Tables

When *isn't* it O(1)?

What are good/bad properties of hash functions? Remember the discussion of naming you with numbers 0-39 and using the identity function as a hash function for a dense data set.

Birthday paradox: what is the probability of *at least* 2 keys in a set of N keys colliding?

Know when to use a bloom filter and not a hash table.

Heaps

What is the heap ordering property? Can you heapify?

 K^{n} -1 = sum(0,n-1, lambda i: (K-1) K^{i}) \leftarrow the K-1 out front is important, people have missed this before

Can you merge 2 leftist heaps? How fast?

Search Trees

What properties do binary search trees have? What is the worst case (unbalanced, balanced)?

What are the properties of a valid AVL Tree?

What are the properties of a valid Red-Black Tree?

Amortized Analysis

There are 3 standard questions:

The binary counter with some cost function

The multipop stack

Doubling some kind of array/table

If you know these, you are probably good

Graphs

Topological Sorting

Mechanical execution of Prim's vs Kruskal's (what order would the edges be added?)

Apply shortest path algorithms

B Trees

Use those formulas from wikipedia

Understand the relationships between minimum number of keys and maximum branching factor