
130A: Amortized Analysis

Subhash Suri

Computer Science Department
Applied Algorithms Group

Algorithms, Complexity, Data Structures, Optimization

February 17, 2015

Subhash Suri (UCSB) CS 130A February 17, 2015 1 / 19

What is Amortized Analysis?

Amortize: to put money aside at intervals for gradual payment of a
debt. (Webster)

Data structures typically undergo a sequence of operations, not just a
single operation.

Worst-case analysis simply adds up the worst possible times of the
individual operations. Can be unduly pessimistic.

Average case analysis makes unrealistic assumptions about input,
often hard to justify.

Amortized analysis offer a nice balance.

Subhash Suri (UCSB) CS 130A February 17, 2015 2 / 19

Why Amortized Analysis?

Amortized analysis: average runtime per operation over a worst-case
sequence of operations.

If T(n) is total cost over a worst-case sequence of n operations, then

Amortized cost per operation =
T(n)

n

Results are both realistic and robust.

Only an analysis technique, not a algorithm design method.

Subhash Suri (UCSB) CS 130A February 17, 2015 3 / 19

Amortized Analysis: 3 Methods

We will discuss 3 different methods for amortized analysis:
I Aggregate Method
I Accounting Method
I Potential Method

Illustrate on two examples:
I Stack
I Binary Counter

Subhash Suri (UCSB) CS 130A February 17, 2015 4 / 19

Amortized Analysis of Stack with MultiPop

Stack data structure has two operations:
I Push(S, x) — push x onto stack S.
I Pop (S) — pop the top element of S.

Each of these ops has worst-case cost O(1).

Add a new operation MultiPop (S,k): it pops top k elements of S.

MultiPop (S,k)
while S 6= ∅ and k > 0

Pop (S)
k = k− 1

end

Subhash Suri (UCSB) CS 130A February 17, 2015 5 / 19

Amortized Analysis of Stack with MultiPop

Worst-case complexity of n MultiPop Stack ops?

Because any single MultiPop can be Θ(n), the standard worst-case
bound is O(n2).

But this is overly pessimistic.

Subhash Suri (UCSB) CS 130A February 17, 2015 6 / 19

Amortized Analysis

Theorem: A sequence of n ops, on an initially empty stack, has cost O(n).

Proof:

Each element is popped at most once (either by Pop or during a
MultiPop).

Total cost of Pops, including MultiPops, is 6 number of Pushes,
which is at most n.

Total cost of all operations is T(n) 6 2n.

Thus, amortized cost per operation for this stack is at most 2.

This bound holds in worst-case, over any sequence!

Subhash Suri (UCSB) CS 130A February 17, 2015 7 / 19

Amortized Analysis of a Binary Counter

Binary counter implemented as an array of bits: A[0 · · · k− 1].

Consider incrementing A starting from 0.

Increment (A)
i = 0;
while i 6= k and A[i] = 1
A[i] = 0; i = i+ 1;

if i < k then A[i] = 1;

Cost of Increment is number of bits flipped.

Subhash Suri (UCSB) CS 130A February 17, 2015 8 / 19

Amortized Analysis of a Binary Counter

Binary counter bit sequence:

Value Bits Cost
0 0 · · · 000 0
1 0 · · · 001 1
2 0 · · · 010 2
3 0 · · · 011 1

In the worst-case, a single increment can flip k bits.

There are n increments, so by standard worst-case analysis, the cost
is O(nk).

Subhash Suri (UCSB) CS 130A February 17, 2015 9 / 19

Binary Counter Analysis

Theorem: Starting with 0, worst-case cost of n increments is O(n).

Proof:

Bit A[0] flips each increment.

Bit A[1] flips every other increment.

Bit A[i] flips during every 1
2i

-th increment.

During n increments, bit A[i] flips n
2i

times.

Assume n 6 2k; otherwise, the counter resets, and restart analysis.

Total cost

logn∑
i=0

b n
2i
c < n

∞∑
i=0

1

2i
= 2n.

Amortized cost per increment is 2.

Subhash Suri (UCSB) CS 130A February 17, 2015 10 / 19

Accounting Method: Second Method of Analysis

Assign different charges to different operations, some more, some less
than true cost.

These (amortized) charges are artificial, but make the accounting for
the total cost easier.

When an operation’s amortized cost > true cost, the data structure
accrues credit.

These credits help pay for operations for which amortized cost < true
cost.

The accounting method makes the first real use of the amortization
principle: the aggregate method doesn’t really assign varying costs to
individual operations.

Subhash Suri (UCSB) CS 130A February 17, 2015 11 / 19

Accounting Method

The key is to choose the amortized costs carefully.

Suppose the actual cost of the ith operation is Ci, and we use some
other cost Ĉi as its amortized cost.

Then, we have to make sure that, for any possible sequence of n
operations,

n∑
i=1

Ĉi >
n∑

i=1

Ci

The total credit accrued by the data structure at any point is
(
∑
Ĉi −

∑
Ci), and we better make sure this is never negative.

Subhash Suri (UCSB) CS 130A February 17, 2015 12 / 19

Accounting Method Analysis of Stack

The actual costs (Ci) of operations in the stack example are:

I 1 for Push
I 1 for Pop
I min(k, s) for MultiPop, where s is the stack size when the MultiPop is

called.

Let us assign the following amortized costs (Ĉi) to these ops:

I 2 for Push
I 0 for Pop
I 0 for MultiPop.

The amortized cost of MultiPop is a constant (in fact, 0), even
though it’s real cost if variable. The intuition is that the credit
accrued through Push operations will be enough to pay for the actual
cost of MultiPop.

Subhash Suri (UCSB) CS 130A February 17, 2015 13 / 19

Accounting Method Analysis of Stack

Think of stack as a bank, where each deposit and withdrawal costs $1.

When an item is Pushed onto the stack, we use $1 for the Push
operation, and leave the second dollar (of its amortized cost) with the
item in the bank.

This second (spare) dollar will be used to pay for the item’s Pop.

The item may be popped either through a single Pop or a MultiPop,
but since each item in the stack has a spare dollar allocated to it, the
Pop and MultiPop can be entirely paid using that credit.

The amortized cost of Pop and MultiPop is therefore 0.

Thus, for any sequence of n Push, Pop, MultiPop, the total
amortized cost is O(n), and it is an upper bound on the actual cost.

Similar analysis for the Binary Counter.

Subhash Suri (UCSB) CS 130A February 17, 2015 14 / 19

Potential Method: Third Method of Analysis

Keep track of the potential energy of the data structure.

Start with initial data structure D0, and perform n updates.

Let Ci be the actual cost of ith op;
let Di be data structure state after op i.

Function Φ measures potential of data structure.

Define amortized cost of operation i as

Ĉi = Ci + Φ(Di) − Φ(Di−1).

Subhash Suri (UCSB) CS 130A February 17, 2015 15 / 19

Potential Method

Since Ĉi = Ci + Φ(Di) − Φ(Di−1), by adding them up over the
sequence, we get

n∑
i=1

Ĉi =

n∑
i=1

Ci + Φ(Dn) − Φ(D0).

Rewriting, we get the total actual cost as

n∑
i=1

Ci =

n∑
i=1

Ĉi + (Φ(D0) − Φ(Dn)).

Suppose Φ(Di) > Φ(D0), for all i, then

n∑
i=1

Ci 6
n∑

i=1

Ĉi.

Subhash Suri (UCSB) CS 130A February 17, 2015 16 / 19

Potential Method

Actual cost of operations is

n∑
i=1

Ci =

n∑
i=1

Ĉi + (Φ(D0) − Φ(Dn)),

The last term is non-positive (Φ(Di) > Φ(D0)).

So, amortized cost is an upper bound on actual total cost.

The most creative part of the analysis is often the choice of Φ.

Subhash Suri (UCSB) CS 130A February 17, 2015 17 / 19

Potential Method Analysis of MultiPop Stack

Let Φ = number of items on stack.

Clearly, Φ(D0) = 0, and Φ(Di) > Φ(D0) = 0.

Amortized cost of Push:

Ci + (Φ(Di) −Φ(Di−1)) = 1 + 1 = 2

Amortized cost of Pop:

Ci + (Φ(Di) −Φ(Di−1)) = 1 − 1 = 0

Amortized cost of MultiPop (S,k):

Ci + (Φ(Di) −Φ(Di−1)) = min(s,k) − min(s,k) = 0.

Thus, amortized cost per operation is O(1).

Subhash Suri (UCSB) CS 130A February 17, 2015 18 / 19

Potential Method Analysis of Binary Counter

Let Φi = Φ(Di) be the number of 1’s in the counter after ith op.

Clearly, Φi > 0, for all i.

Suppose ith Increment resets ti bits.

Actual cost Ci = ti + 1.

If Φi−1 = bi, then Φi = bi − ti + 1.

Amortized cost

Ĉi = Ci + (Φi −Φi−1)

= (ti + 1) + (bi − ti + 1 − bi)

= 2

Total cost is 6
∑
Ĉi = 2n.

Subhash Suri (UCSB) CS 130A February 17, 2015 19 / 19

